
M A K I N G T H E A D M I N ’ S L I F E
T H AT M U C H E A S I E R

Linux Shell Scripting

1 - Introduction

About the Instructor

1 - Introduction 2

⊜Nathan Isburgh
⊜ nathan.isburgh@edgecloud.com

⊜Unix user 25+ years, teaching it 20+ years
⊜Unix Administration and Software Development

Consultant
⊜All around über-geek

⊜Goofy, forgetful (remember that)

About the Course

⊜4 days, lecture/lab format
⊜ Hours: 8:30 - 4:00
⊜ Lunch: 12:00 – 1:00

⊜Breaks about every hour
⊜ Throw something soft at me if I get too long in the tooth

⊜Telephone policy
⊜ Take it outside, please

⊜Restrooms
⊜Refreshments

1 - Introduction 3

About the Students

1 - Introduction 4

⊜Name?
⊜Time served, I mean employed, in the IT field?

⊜Department?
⊜General Unix skill level? What about Linux?
⊜And familiarity with Bash?

⊜How do you use Linux in your position?
⊜What are you hoping to take away from this class?

Expectations of Students

⊜Strong foundation in basic Linux use and administration
⊜ Preferably through RHCSA

⊜Strong understanding of working in the shell
⊜Ask Questions!

⊜Complete the labs
⊜Email if you’re going to be late/miss class

⊜Have fun
⊜Learn something

1 - Introduction 5

1 - Introduction 6

Intentionally Left Blank

Scripting Basic Concepts

2 - Scripting Basic Concepts

Overview

2 - Scripting Basic Concepts

⊜There are several basic concepts about the shell and
scripting which must be understood before tackling more
complex problems
⊜ Basic shell syntax
⊜ Shebang syntax

⊜ Quoting

⊜ Exit status and subprocesses
⊜ Variables

⊜ Commenting

8

Shell Syntax

2 - Scripting Basic Concepts

⊜Shell scripting is simply placing a sequence of shell
commands into a file, for future “playback”
⊜ Obviously there are plenty of details, which is what we will be

exploring in this course
⊜ At the end, though, it all boils down to shell commands

⊜Therefore, it follows that you must already have a strong
foundation in basic shell syntax
⊜ Quoting

⊜ Environment variables

⊜ Commands

9

Scripting 101

2 - Scripting Basic Concepts

⊜Simple shell scripts simply run command after command,
as if the user typed them in at the command line
⊜ More complex shell scripts actually make decisions about what

commands need to be run, and might even repeat certain sequences
to accomplish a given task

⊜Scripts start executing at the top and stop when there
are no more commands to execute or when exit is
called
⊜ Or due to a syntax error!

10

Example

2 - Scripting Basic Concepts

⊜Here is a very simple shell script to consider

11

echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

⊜Using the echo command, this script asks a question.

⊜The read command accepts input from the user and
stores it in the environment variable NAME

⊜The script finishes up with a couple more echo
statements, greeting the user and announcing today’s date

Running The Example

2 - Scripting Basic Concepts

⊜If we put the example in a file called myscript, we can
execute the script as:
⊜ bash myscript

⊜Which instructs your interactive shell to start a new shell,
bash, to open myscript and execute each line as if
the user had typed it in manually

⊜Running in this way, bash operates as an interpreter
⊜ Reading each line of the file, bash would interpret the words and

perform the given action

⊜There are many interpreted languages available for
scripting, including all of the shells, python, ruby, perl, etc.

12

Interpreters

2 - Scripting Basic Concepts

⊜Following this idea, to run a script, you simply feed the file
to the appropriate interpreter
⊜ bash mybashscript

⊜ perl myperlscript

⊜This works fine, but sometimes it’s more user-friendly to
allow the script to be run directly, removing the need for
an external call to the interpreter...
⊜ ./mybashscript
⊜ myperlscript

⊜How is this done?

13

Shebang!

2 - Scripting Basic Concepts

⊜This is accomplished with the shebang (#!), also known
as a hash bang, pound bang or hashpling.

⊜The basic idea is very simple

⊜When the kernel is asked to execute a file, the content
must either be machine code (compiled software), or a
file that starts with the shebang sequence

⊜If the first two characters of the file are a hash mark and
an exclamation mark (shebang!), the rest of the line is
expected to be a pathname for an interpreter, which will
then be invoked to “run” the file as a script
⊜ Connecting the script to stdin of the interpreter process

14

Back to the Example

2 - Scripting Basic Concepts

⊜So, add an appropriate shebang to the example:

15

#!/bin/bash
echo “Hello, what is your name?”
read NAME
echo “Hello $NAME, it’s nice to meet you!”
echo -n “The current time is: “
date

⊜Then add execute perms so the script can be run directly:

[root@localhost ~]# chmod a+x myscript
[root@localhost ~]# ./myscript
Hello, what is your name?
Linus
Hello Linus, it’s nice to meet you!
The current time is: Sun Jul 21 09:39:33 CDT 2013
[root@localhost ~]#

Details to Note

2 - Scripting Basic Concepts

⊜Note the use of quoting in the example
⊜ Remember that everything in a shell script must follow shell syntax!

⊜If something would need to be quoted on the command
line (due to whitespace or metacharacters), it will also
need to be quoted in the shell script

⊜In addition to single and double quotes, remember your
escape character: \ (the backslash)
⊜ Do you know the difference between the quoting mechanisms?

16

Exit Status

2 - Scripting Basic Concepts

⊜Another important detail to internalize when shell
scripting is the importance of exit codes (or statuses)

⊜Every single time a process is finished executing, it
notifies the kernel via an exit system call

⊜There is a required parameter to the exit system call,
known as the exit status

⊜The exit status is a number, and there are only two values
meaningful to the kernel and shells:
⊜ Zero: Zero means a successful application exit

⊜ Non-Zero: Any non zero exit status implies a failure of some sort

17

Exit Status and Scripting

2 - Scripting Basic Concepts

⊜The reason that the exit status is so important to shell
scripting is because all of the shell features used in scripting
are based on exit status
⊜ Conditionals
⊜ Looping

⊜ Intelligent command separators

⊜Note that the actual non-zero values a program might
use, such as 14, -8, 2, etc, do not have standard meanings
⊜ The documentation for an application might specify the meaning of

particular exit codes, which can then be checked in a script through
the $? special environment variable

18

Variables

2 - Scripting Basic Concepts

⊜Variables in shell scripting are nothing more than
standard environment variables

⊜This is convenient; the known rules and capabilities apply
⊜ NAME=value

⊜ NAME=“quoted value”

⊜ ls $NAME
⊜ echo Hello ${NAME:-Sir/Madam},may I help you\?

⊜The set and env commands are useful

⊜See bash manpage under heading “Parameter Expansion”

19

Commenting

2 - Scripting Basic Concepts

⊜Commenting falls under the larger topic of coding style,
which could be a class unto itself
⊜ Note that style is an individual attribute, developed over time as a

software developer
⊜ It is also often lightly or strictly specified by organization

⊜To simplify this discussion, let us recall the Golden Rules
of Commenting…

20

The Golden Rules of Commenting

2 - Scripting Basic Concepts

⊜Always comment code which is not obvious to a non-
author reader
⊜ You should not comment “i=i+1”

⊜ You should comment “rsync –vazpc $WHAT $WHERE”

⊜Always comment functions: their purpose, use, arguments,
expectations and results

⊜Always comment the overall program’s purpose and
behavior at the top of the file
⊜ Include dates and authors (maybe an abbreviated revision history?)

⊜Always comment when not sure if you should
⊜ They don’t cost anything!

21

Lab

2 - Scripting Basic Concepts

⊜Write a basic “Hello world” shell script
⊜ The script should greet the user by name, then welcome him to the

world of scripting. Consider commands or environment variables
which might obtain the user’s login name.

⊜ Match the following output format, substituting the underlined values
appropriately:
⊜Hello nisburgh. Welcome to the world of
scripting.

⊜The current date is Tuesday, July 04, 2017.

⊜Follow all of the guidelines discussed
⊜ Make it a standalone executable using the shebang syntax
⊜ Comment appropriately

⊜Read documentation for assistance
22

Useful Tools in Scripting

3 - Useful Tools in Scripting

Overview

3 - Useful Tools in Scripting

⊜There are, of course, many, many tools to use while
scripting, but some are more powerful, or more
frequently used

⊜We will overview three of these tools now:
⊜ awk
⊜ sed
⊜ xargs

24

awk

3 - Useful Tools in Scripting

⊜awk is an incredibly powerful tool, which contains it’s own
programming language

⊜One of the most commonly used features of awk, is to grab
particular columns of information from stdin

⊜Consider the columns from ps aux:
⊜ USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

⊜Using awk, grabbing particular columns is easy!
⊜ ps aux | awk ‘{print $2” is using “$3”% of the CPU”}’

25

sed

3 - Useful Tools in Scripting

⊜sed stands for “stream editor” and that is exactly what it
does

⊜sed takes an expression describing an operation to
perform, and then applies that operation to each line of
input

⊜It is commonly used to perform find/replace operations:
sed -e ‘s/example.com/mycompany.com/’ /etc/httpd/conf/httpd.conf

⊜This example replaces every occurrence of example.com
with mycompany.com

⊜sed can do way, waaaay more. Consult a google or get the
O’Reilly book: “Sed and Awk”

26

xargs

3 - Useful Tools in Scripting

⊜xargs is another very useful tool at the command line, and
in scripting

⊜It takes a second to wrap your head around what xargs
does:
⊜ Accepts input from stdin

⊜ For each line or lines of input, run a given command with the input
lines as arguments for the command

⊜For example:
ps aux | fgrep bad_cron | awk ‘{print $2}’ | xargs kill

⊜Let’s discuss what’s happening with the example

27

3 - Useful Tools in Scripting 28

Intentionally Left Blank

Conditionals

4 - Conditionals

To Execute or Not To Execute

4 - Conditionals

⊜More advanced problems require the script to make
decisions. There are two basic ways to make decisions
with shell scripts:

⊜if statements
⊜ The most basic and powerful conditional

⊜ “If some condition is true, then do these things”

⊜case statements
⊜ A streamlined version of an if statement, mainly used to improve

readability and maintenance of code

⊜ “Taking a given input and several possible values I’m interested in,
which one matches? Then do these things based on that match”

30

The test Command

4 - Conditionals

⊜Before we continue talking about decisions, we need to
talk about the test command. This command actually
performs the comparisons necessary to ask many
common questions, such as:
⊜ “string1” = “string2” Is string1 identical to string2
⊜ $VAR -lt 45 Is $ VAR numerically less than 45
⊜ -e path Does path exists

⊜The result of the test is in the exit status
⊜ True Exit 0
⊜ False Exit 1

⊜See the man page on test for additional details and
more flags; there are many tests it can perform

31

The test and [Commands

4 - Conditionals

⊜The test command has a functionally identical sibling:
⊜ The [command

⊜The [command is provided for improved readability in
scripts – it has no additional features beyond test

⊜In bash, the test and [commands are actually built-in
⊜ They are also available as standalone binaries from the coreutils

package, in the /bin folder

32

Shell Conditionals

4 - Conditionals

⊜Identical to the test command, the shell can perform
the same conditional checks using the
[[expression]] syntax

⊜Consider:
⊜ [[-d /tmp/mytool]] && mv logfile /tmp/mytool

⊜See Conditional Expressions in the manpage for a
complete reference on all of the available tests

33

The if Statement

4 - Conditionals

⊜Basic syntax:

if list
then list

[elif list

then list]

...

[else list]

fi

34

Example

4 - Conditionals 35

#!/bin/bash
echo “Hello, what is your name?”
read NAME
if [“$NAME” = “Linus”]
then

echo “Greetings, Creator!”
elif [“$NAME” = “Bill”]
then

echo “Take your M$ elsewhere!”
exit

else
echo “Hello $NAME, it’s nice to meet you!”

fi
echo -n “The current time is: “
date

⊜This script bases it’s response on the name given

The case Statement

4 - Conditionals

⊜Basic syntax

case word in
pattern) list;;

...

esac

36

Example

4 - Conditionals 37

#!/bin/bash
echo “Hello, what is your name?”
read NAME
case ”$NAME” in

“Linus”)
echo “Greetings, Creator!”
;;

“Bill”)
echo “Take your M$ elsewhere!”
exit
;;

*)
echo “Hello $NAME, it’s nice to meet you!”

esac
echo -n “The current time is: “
date

⊜This script maintains identical behavior, but uses a case statement

Lab

4 - Conditionals

⊜Write a shell script which uses an if statement to print a
special message on the first and fifteenth of the month:
⊜ If it is the first or fifteenth of the month, the script should print:

⊜YAY! Payday!

⊜ Otherwise, it should print:
⊜Boo.. Not yet payday..

⊜To test, simply change the date of your machine
⊜ Check the first, second, tenth, eleventh, fifteenth, and twenty first

⊜Remember to comment appropriately

38

Looping

5 - Looping

Looping

5 - Looping

⊜Sometimes a certain sequence of commands need to be
run repeatedly, either for a set number of times or while
some condition is true. This is accomplished with:

⊜while loops
⊜ Most common and powerful loop form
⊜ “Check some condition and if true, run these commands. Then

check again and if still true, run these commands again. Repeat until
the condition is no longer true.”

⊜for loops
⊜ Simple method for looping a given number of times or over a list
⊜ “Do this X times.”
⊜ “Do this for each item in a list”

40

The while Loop

5 - Looping

⊜The while loop is the most common, but be aware it
has a brother, the until loop
⊜ The until loop is identical in operation, but the conditional

requirements are reversed; execute while the conditional is false

⊜Basic while/until syntax:

while list;

do list;

done

41

Example

5 - Looping 42

#!/bin/bash
echo “Hello, what is your name?”
read NAME
while [“$NAME” != “Linus”]
do

echo “I don’t know that person, what is your name?”
read NAME

done
echo “Greetings, Creator!”
echo -n “The current time is: “
date

⊜This script will loop until the given name is “Linus”

The for Loop

5 - Looping

⊜There are two major forms of the for loop
⊜Basic syntax of the first:

for ((expr1 ; expr2 ; expr3))
do list;

done

Expressions expr[1-3] are defined as:

expr1 Initialization (sets up loop controls)
expr2 Conditional (defines loop requirements)
expr3 Iteration (steps controls towards requirements)

43

Example

5 - Looping 44

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for ((I=0 ; I<3 ; I++))
do

echo “Hello $NAME!!”
done
echo -n “The current time is: “
date

⊜This goofy script repeats your name 3 times before giving
you the date and time

The for Loop

5 - Looping

⊜The second form iterates over items in a list

⊜Basic syntax:

for name in word ...;
do list;

done

45

Example

5 - Looping 46

#!/bin/bash
echo “Hello, what is your name?”
read NAME
for TIME in Three Two One
do

echo “$TIME”
sleep 1

done
echo “Hello $NAME!!”
echo -n “The current time is: “
date

⊜This goofy script counts down “Three…Two…One…” then
yells the given name, followed by the date and time

⊜Note that you can execute a subcommand with the back
quotes, and each line will become a list item:

for item in `ls /tmp`

Lab

5 - Looping

⊜Write a script which uses loops and conditionals to
announce the time every 10 seconds, on even 10 second
divisions (0, 10, 20, 30, 40, 50)
⊜ It is 1:01:30pm!
⊜ It is 1:01:40pm!
⊜ Etc…

⊜Think of efficient ways to perform this operation, such as
sleep statements. Do not “spin.” Spinning is when a
program runs as fast as it can in a loop waiting on some
event to occur, rather than using more intelligent
behavior such as alarms, blocks and timers to conserve
CPU resources

47

5 - Looping 48

Intentionally Left Blank

Special Variables

6 - Special Variables

Special Variables

6 - Special Variables

⊜The shell has many special variables to contain
information
⊜ Positional parameters (arguments)

⊜ Exit status of previous command

⊜ Bash information

⊜There are also several ways of getting at the values of
variables, known as parameter expansion

50

Positional Parameters

6 - Special Variables

⊜The positional parameters are the arguments to the
script or a function

⊜They are assigned numerically, left to right
⊜ script argA argB argC
⊜ $0 is the script name
⊜ $1 is argA
⊜ $2 is argB
⊜ $3 is argC

⊜Also, there are a couple of related special variables
⊜ $# is the total number of arguments (not including $0)
⊜ $@ expands to a space separated list of all arguments

51

Exit Status

6 - Special Variables

⊜The exit status of the previously executed command can
be obtained through the $? variable

⊜It is important to consider the meaning of this variable
⊜Every time you execute a command, it changes

⊜ If you echo $?, by the following line it’s different already (the exit
code of echo)

⊜For this reason, you will often see scripters storing the
value in another variable for future examination:
⊜ command with important exit status
⊜ ESTAT=$?
⊜ if [$ESTAT –eq 5] ...

52

Bash Information

6 - Special Variables

⊜There are dozens of informational variables which are
maintained by bash, including some useful ones:
⊜ HOSTNAME
⊜ PWD
⊜ UID
⊜ BASHPID
⊜ BASH_VERSION

⊜For a complete list of variables, see the manpage under
various headings, including “Special Parameters” and “Shell
Variables”

53

Expanding Variables

6 - Special Variables

⊜Variables have several methods of expansion to values
⊜ $NAME
⊜ ${NAME} to be more precise, or embed in another term
⊜ ${NAME:-word} will expand to word if NAME is not set or null
⊜ ${NAME:=word} will expand to and assign NAME to word if

NAME is not already set or null
⊜ ${NAME:?word} will fail with an error message of word if NAME

is not set or null
⊜ ${NAME:offset:length} fetches length characters from

NAME starting at offset
⊜ ${#NAME} returns character length for value of NAME

⊜See manpage under “Parameter Expansion” for complete
details and additional options

54

Lab

6 - Special Variables

⊜Modify the lab from the Loops module to accept two
optional parameters
⊜ The number of total announcements to make before exiting (

originally it would run forever, which should be the default)
⊜ A yes or a no, which indicates whether or not to also print the date

with the announcement. Default of yes

⊜Example:
⊜ myscript 5 yes

⊜ Would report 5 times and exit, and each report line would say
something along the lines of:
⊜It is 4:32:20pm, August 4, 2017!

55

6 - Special Variables 56

Intentionally Left Blank

Functions

7 - Functions

Overview

7 - Functions

⊜Functions are an important component of code
organization and reuse

⊜A function allows you to group a series of statements
under a name, then call the function at any time to
execute the collected statements

⊜You can also pass arguments to the function for it to
operate on

⊜Further, the function can return a value to the caller,
indicating status or results

58

Example

7 - Functions 59

#!/bin/bash

sayhello() {
echo Hello $1
return 5

}

sayhello Bob

⊜This script defines a function called sayhello, which it
then uses to say hello to Bob

⊜Note how arguments are passed (through standard
positional parameters)

⊜Note how a return value is generated
⊜ Default is the exit status of last command executed by function

Using Functions

7 - Functions

⊜Functions are often collected in a file, and used by
multiple scripts as a library

⊜To use a library, you need to source the file, using either:
source path-to-library

. path-to-library

⊜For an example, see the startup scripts in the init.d
folder

⊜They all use the /etc/init.d/functions library
for common operations like starting a service

60

Lab

7 - Functions

⊜Modify the lab from the Special Variables module such
that the reporting functionality is wrapped in one or
more functions

⊜Place the function(s) in a library
⊜Get creative and add a few more functions to encompass

some silly behaviors like using names, printing banners or
doing file operations with redirection

⊜Write a new script which uses the library to offer
behaviors to the user through a simple menu system

61

7 - Functions 62

Intentionally Left Blank

Scripting Best Practices

8 - Scripting Best Practices

Best Practices

8 - Scripting Best Practices

⊜As our scripts grow in complexity, and get shared with
colleagues, there are some guidelines which can help
improve readability and maintainability

⊜This will produce more professional, less buggy scripts
with greater features

⊜In addition, good code design leads to good code reuse,
improving ROI

⊜A Style Guideline should be established within the
organization, mandating basic requirements suitable
across languages

64

Commenting

8 - Scripting Best Practices

⊜Remember from an earlier lecture:

⊜Commenting falls under the larger topic of coding style
⊜ Note that style is an individual attribute, developed over time as a

software developer

⊜ It is also often lightly or strictly specified by organization

⊜As a starting point, consider the Golden Rules of
Commenting, but keep in mind plans for a style guideline

65

Proper Script Structure

8 - Scripting Best Practices

⊜Scripts should generally be laid out as:

66

#!Shebang!
#
Script comment block (purpose, arguments, rev history, etc)
#

Config variables with comments
CONFIG_VAR1=”user can tweak this”

END OF CONFIGURATION – NO EDITS BELOW THIS LINE

Function definitions
fail() { echo boohoo ; exit -1 }

Main code block
if [$# -lt 2] ; then fail ; fi
...

Always Initialize Variables

8 - Scripting Best Practices

⊜You should always initialize your variables
⊜ It looks cleaner, and for complex scripts, a short comment can be

left indicating the purpose of the variable

⊜ Security! If variables aren’t initialized, an educated user can easily
pre-initialize a variable from the command line and cause all sorts of
problems, some maybe nefarious!

67

Indentation

8 - Scripting Best Practices

⊜Ah yes, good old indentation
⊜ Many a bloody nerd war has erupted over disagreements on

indentation styles

⊜To avoid this same fate, let us agree on one simple rule:
⊜ Pick an indentation style, and stick to it 100% of the time

⊜The possibilities are endless:
⊜ Tabs, two spaces, four spaces? Suggest: 2 spaces

⊜ Indent all the blocks, only the multiline blocks, or? Suggest: all

⊜ Reserved words: same line, different lines, indented? Suggest: different
lines, indent the blocks only

⊜ Etc, etc, etc

68

Check Those Arguments

8 - Scripting Best Practices

⊜Users rarely do anything right – train yourself to expect
that at all times, and you’ll write better code. J

⊜Case in point: Arguments
⊜ Check for the expected number of arguments
⊜ Check for the expected types of data: numbers, strings, flags
⊜ Check argument values if appropriate, eg: if it is supposed to be a

pathname, check that it’s valid and exists

⊜On very large or complex scripts with many arguments, it
might be prudent to consider an argument parsing library
like getopt (external program, some inconsistencies)
or getopts (shell builtin, consistent but no long
arguments)

69

Check Commands and Versions

8 - Scripting Best Practices

⊜If a script uses tools that are even remotely uncommon, it
should check for their existence early on and error out if
anything is missing

⊜Along the same lines, if there are any feature
expectations, or important bug fixes tied to a version of a
tool, library or even the shell itself, those version details
should be verified early on
⊜ Note that this requires a judgment call – there is no need to check

version information on every piece of software touched – just the
ones that could be off. For example:
⊜ If a script relies on associative arrays, it should check that the bash

interpreter is at least version 4 (EL5 ships with v3!)
70

Assign Exit Codes

8 - Scripting Best Practices

⊜Exit codes can be extremely useful to the users of your
script

⊜At the very least, always exit 0 for success and non-zero
for failure

⊜Best case scenario: assign exit codes to different
conditions, eg
⊜ 1: invalid arguments
⊜ 2: insufficient permissions

⊜ 3: missing required software

⊜ 4: httpd not running
⊜ 5: unknown error

71

Write Common Functions

8 - Scripting Best Practices

⊜Write some common, useful functions, such as:
⊜ fail(code, msg) – Prints message to stderr and exits with

given code
⊜ succeed() – Maybe print happy message, then exit 0
⊜ cleanup() – For complex scripts, cleanup things like logs, locks,

etc. Usually called from fail() and succeed()
⊜ debug(msg) – Prints a debug message to stderr. Bonus: use a

config variable and/or command line flag to control behavior
⊜ usage() – Print a detailed usage message to the user if there is a

mistake in arguments, or -h/-? Passed

⊜Perhaps a good case for a library…

72

stderr

8 - Scripting Best Practices

⊜USE IT! Correctly!

⊜Recall:
⊜ stdout – Normal command output/results

⊜ stderr – Warnings, errors, fails of any kind

⊜Quick and easy ways to output to stderr:
⊜ printf blah > /dev/stderr

⊜ printf blah >&2

⊜This is one of the benefits of writing those common
functions!

73

Command Substitution

8 - Scripting Best Practices

⊜Recall the awesomely powerful backtick, `
⊜ It runs the command in backtacks, takes its stdout and substitutes it,

minus any trailing newlines, onto the calling command line
⊜ echo `whoami`

⊜ becomes

⊜ echo student

⊜Very useful in many situations, and it is backwards
compatible with some older shells

⊜But…

74

Command Substitution

8 - Scripting Best Practices

⊜Try to avoid the backtick for command substitution
⊜ It is not POSIX compliant
⊜ It does not nest properly

⊜ Quotes can be a serious pain

⊜Instead, use the $() syntax:
⊜ echo $(whoami)

⊜Same behavior, but:
⊜ POSIX compliant

⊜ Nests

⊜ Handles quotes much more simply

75

Lab

8 - Scripting Best Practices

⊜Put together a properly styled skeleton for a shell script, called
skel.sh

⊜This should include:
⊜ All of the components discussed in lecture, and placeholders for the pieces

which are not known yet (like config variables)
⊜ The various common functions
⊜ Come up with at least five common script failures, and assign them default

exit codes (example: ‘invalid arguments’ assigned -2)

⊜Copy skel.sh to health-report.sh, with synopsis:
⊜ ./health-report.sh [-td] email
⊜ -t will email one output iteration from top to the email address
⊜ -d will email the output of ‘df -h’ to the email address
⊜ email is the email address for the recipient of the report

76

Advanced Variables

9 - Advanced Variables

Special Variables

9 - Advanced Variables

⊜Recall that the shell has many special variables with useful
information and settings
⊜ Positional parameters (arguments)
⊜ Exit status of previous command
⊜ Bash information
⊜ Feature control variables (IFS, OPT*, DIRSTACK, etc)

⊜During future labs, be sure to peruse the bash man page
sections on:
⊜ Special Parameters - @, #, ?, $, -
⊜ Shell Variables - LINENO, SECONDS, PIPESTATUS
⊜ Parameter Substitution - ${#PATH}, ${INPUT:5:10}

78

Arrays

9 - Advanced Variables

⊜In addition to simple variables containing just strings and
numbers, bash also supports array variables

⊜An array is just a collection of values, all stored within one
variable, logically:
⊜ TEST à val1,val2,val3,val4,val5

⊜Traditionally, the different values in the array are
referenced using numbers, called indexes, starting at zero:
⊜ TEST[0] à val1

⊜ TEST[1] à val2

⊜ …

⊜This is known as an Indexed Array
79

Indexed Array Example

9 - Advanced Variables 80

To create the array, just start assigning values:
MYDIRS[0]=”/”
MYDIRS[1]=”/home”
MYDIRS[2]=”/usr”

echo $MYDIRS
will just show ”/” since that is first member

echo ${MYDIRS[1]}
will show ”/home”
Note that you must use the braced expansion syntax, due to
overloading of the square bracket characters (pathname wildcard)

echo ${#MYDIRS[*]}
shows 3, since there are three values in the array

Associative Arrays

9 - Advanced Variables

⊜As of bash version 4, Associative Arrays are available

⊜An associative array uses strings to get at values, as
opposed to numbers

⊜Associative arrays have to be created specially, using the
declare builtin

81

declare -A MYDICTIONARY

MYDICTIONARY[apple]=fruit
MYDICTIONARY[carrot]=vegetable
MYDICTIONARY[linux]=”Awesome operating system”
MYDICTIONARY[windows]=”An operating system”

Lab

9 - Advanced Variables

⊜Copy skel.sh to proc-count.sh and implement
as:
⊜ proc-count.sh [-f filter]... [-c] email

⊜This script will count processes with command names
that match one or more filters, emailing one of two
possible reports, either a TSV (which is default) or a
CSV (selected with the -c flag)
⊜ filter count

⊜Or
⊜ filter,count

⊜If no filter is given, all processes should be reported
⊜Use arrays as appropriate (perhaps filters, results?)

82

Advanced Expansions

10 - Advanced Expansions

Overview

10 - Advanced Expansions

⊜An expansion occurs when the shell acts on
metacharacters in a command to automatically expand
their contents based on rules
⊜ Sometimes, so the user does not have to type as much (wildcards)
⊜ Other times, to reference variables and other shell features

⊜There are seven different kinds of expansions in bash:
⊜ Brace expansion, tilde expansion, parameter/variable expansion,

command substitution, arithmetic expansion, word splitting, and
pathname expansion

⊜On operating systems that support named pipes (like
Linux!), there is one additional form, known as process
substitution

84

Brace Expansion

10 - Advanced Expansions

⊜Brace expansion allows for the automatic creation of
arbitrary strings

⊜Consider:
⊜ echo a{1..5}b

⊜a1b a2b a3b a4b a5b

⊜ echo a{f,h,g}b
⊜afb ahb agb

⊜As seen in the examples, you can expand ranges of
numbers or letters, as well as comma separated lists of
values

85

Tilde Expansion

10 - Advanced Expansions

⊜You should already be familiar with tilde expansion, which
evaluate to user home directories:
⊜ echo ~

⊜ /home/student

⊜ echo ~alice
⊜ /home/alice

⊜What you might not know is that tilde can be used to reference
current directories (~+) and previous directories (~-):
⊜ cd /home ; cd / ; echo ~+ ; echo ~-

⊜ /

⊜ /home

⊜ Started in /home, then moved to /. ~+ expanded to /, ~- expanded to /home

86

Parameter/Variable Expansion

10 - Advanced Expansions

⊜This topic was covered in depth previously

⊜Quick reminder:
⊜ $PATH

⊜ ${PATH}

⊜The second form is more precise, and should generally be
used anytime a variable reference is embedded within
additional content, to protect from misinterpretation
⊜ Also note, the curly brace expansion syntax allows for extremely

powerful capabilities, including arrays, searching, substrings, character
counts, case manipulation and more

87

Command Substitution

10 - Advanced Expansions

⊜Command substitution is incredibly useful, as it instructs
the shell to run a given command in a new shell, and
capture its output in some particular manner

⊜Recall the backtick and $() from an earlier lecture:
⊜ echo `whoami`
⊜ echo $(whoami)

⊜whoami will be run from a new shell, and it’s standard
output, minus any trailing newlines, will be substituted
into the quoted/parenthesis section of the command line,
which is then executed from the main shell, as:
⊜ echo student

88

Arithmetic Expansion

10 - Advanced Expansions

⊜Sometimes, it’s incredibly useful to have the shell perform
some simple math, and it’s also incredibly easy to use:
⊜ echo $((6*8))

⊜48

⊜Bash has a slew of operations available, including
add/subtract/multiply/divide, exponentiation, bitwise
operations including shifts, negations and logical
operations, increments, decrements and more

⊜See the manpage under Arithmetic Evaluation

89

Word Splitting

10 - Advanced Expansions

⊜Word splitting is an interesting feature of the shell, that
allows it to identify words within a parameter expansion,
command substitution and arithmetic evaluation, and then
split them out

⊜There is a shell variable known as IFS, which stands for
Internal Field Separator
⊜ This variable defines the characters which can separate words, and

the default IFS is ‘<space><tab><newline>’
⊜ Also note that the first character of IFS is used to separate the

found words during splitting

⊜Try the following:
⊜ echo $(w)

90

Pathname Expansion

10 - Advanced Expansions

⊜Pathname expansion is nerd-speak for how wildcards
work in the shell

⊜This shouldn’t require review, but recall the three
wildcards:
⊜ *
⊜ ?

⊜ [set]

91

Process Substitution

10 - Advanced Expansions

⊜Process substitution is a very neat shorthand for dynamically
creating named pipes which are used for input or output

⊜Consider the first form:
cat /etc/passwd <(w) <(df -h) <(uname -a) > report

⊜The <() syntax creates the process substitutions
⊜What’s really going on here, is that the inner command is

executed, with its stdout connected to a named pipe dynamically
created under /dev/fd

⊜That pathname is then substituted on the outer command line,
which becomes an argument, and in this case, cat simply reads
from the /dev/fd file like any other
⊜ Try: echo cat /etc/passwd <(w) <(df -h) <(uname -a) \> report

92

Process Substitution

10 - Advanced Expansions

⊜The second form of process substitution is similar, except
the other direction

⊜The /dev/fd file is created to accept input from the outer
command, and the file is attached as stdin on the inner
command

⊜Consider:
⊜ tar cf - . > >(gzip -9c > crazy.tgz)

⊜It looks crazy, but just step through the operations
⊜ tar is outputting to stdout, which is redirected to the process

substitution (which in reality is a /dev/fd pathname)
⊜ gzip is reading from stdin, which is the /dev/fd path

93

Sample Code

10 - Advanced Expansions

⊜Next, we will review various snippets of sample code
⊜ Learn from the good ideas, avoid the bad ones
⊜ Break down functionality

⊜ Explain behavior

⊜ Identify potential bugs or concerns

94

Sample Code – Swap Summarization

10 - Advanced Expansions 95

#!/bin/bash
Show swap memory usage per-process

(
echo "PID Mem(kB) Binary"
for x in `ls /proc/ | grep -e '^[0-9][0-9]*$'`; do

PID=$x
SWAP=`grep VmSwap /proc/$x/status | awk '{print $2}'`
PROC=`ps aux | awk '$2 ~ /^'$PID'$/ {print $11}'`
if [! -z "$SWAP"]; then

echo "$PID $SWAP $PROC"
fi

done 2>/dev/null | sort -nk 2
) | column -t

Sample Code – Recursive Configs

10 - Advanced Expansions 96

APACHEDIR=/etc/httpd
TMPDIR=/tmp/conflist
FORE=1
AFT=0

cd $APACHEDIR
mkdir -p $TMPDIR
rm -f $TMPDIR/authlist
touch $TMPDIR/authlist
echo "conf/httpd.conf" > $TMPDIR/newfinds

while [[$FORE != $AFT]]; do
FORE=`cat $TMPDIR/authlist | wc -l`

rm -f $TMPDIR/grepping
mv $TMPDIR/newfinds $TMPDIR/grepping

for x in `cat $TMPDIR/grepping`; do
grep -Ei '^\s*include\s' $x | awk '{print $2}' >> $TMPDIR/newfinds

done

cat $TMPDIR/grepping $TMPDIR/authlist $TMPDIR/newfinds | sort -u > $TMPDIR/tmp
rm -f $TMPDIR/authlist
mv $TMPDIR/tmp $TMPDIR/authlist
AFT=`cat $TMPDIR/authlist | wc -l`

done

for x in `cat $TMPDIR/authlist`; do echo $x; done | sed '/^\//!s/^/\/etc\/httpd\//'

Sample Code – Trapping and Locks

10 - Advanced Expansions 97

LOCK_FILE=/tmp/`basename $0`.lock
function cleanup {
echo "Caught exit signal - deleting trap file"
rm -f $LOCK_FILE
exit 2

}
trap 'cleanup' 1 2 9 15 17 19 23 EXIT
(set -C; : > $LOCK_FILE) 2> /dev/null
if [$? != "0"]; then
echo "Lock File exists - exiting"
exit 1

fi

######################################
Main Script Body
######################################

Sample Code – Expansions and Math

10 - Advanced Expansions 98

PARENTPIDS=`comm -12 <(ps -C httpd -C apache2 -o ppid | sort -u) <(ps -C httpd -C apache2 -o pid | sort -u)`

for ParPID in $PARENTPIDS; do
SUM=0
COUNT=0
for x in `ps f --ppid $ParPID -o rss | tail -n +2`; do
SUM=$(($SUM + $x))
COUNT=$(($COUNT + 1))

done

MEMPP=$(($SUM / $COUNT / 1024))
FREERAM=$((`free | tail -2 | head -1 | awk '{print $4}'` / 1024))
APACHERAM=$(($SUM / 1024))
APACHEMAX=$(($APACHERAM + $FREERAM))

(
echo
echo "Info for the following parent apache process:"
echo " "`ps f --pid $ParPID -o command | tail -n +2`
echo
echo "Current # of apache processes: $COUNT"
echo "Average memory per apache process: $MEMPP MB"
echo "Free RAM (including cache & buffers): $FREERAM MB"
echo "RAM currently in use by apache: $APACHERAM MB"
echo "Max RAM available to apache: $APACHEMAX MB"
echo
echo "Theoretical maximum MaxClients: $(($APACHEMAX / $MEMPP))"
echo "Recommended MaxClients: $(($APACHEMAX / 10 * 9 / $MEMPP))"
echo
)

done

Lab

10 - Advanced Expansions

⊜Modify health-report.sh from the earlier lab:
⊜ Add a new flag, -m, to create a list of process names and memory

percentages, sorted descending by memory usage.
⊜ Also, add a -c flag to indicate “collect only” mode. The user should

not need to supply an email in this mode. In this mode, the script
should produce the requested reports (from the other flags), but
instead of emailing them immediately, it should collect them in a file
under /tmp called health-report.YYYY-MM-DD
⊜You can simply append each new report to the file, but include a header in

front of each new report that has the date/time
⊜ Finally, add a -r flag which accepts a date in YYYY-MM-DD form, and

emails the requested report to the supplied email address
⊜ Make sure to produce meaningful error messages for all failures

99

10 - Advanced Expansions 100

Intentionally Left Blank

Additional Topics

11 - Additional Topics

Overview

11 - Additional Topics

⊜There are a few other topics that should be covered, but
did not fall under any of the previous topics
⊜ Here documents

⊜ Subshell executions

⊜ Command separators / control operators
⊜ Trapping signals

⊜ Terminal codes to get colors and special modes

⊜ Automagic logging with coproc

102

Here documents

11 - Additional Topics

⊜Here documents are a really convenient way to enter multiple
lines of text at the command line, or from within a shell script

⊜Usage is fairly simple:
cat << samp

Everything I type will go to

stdin of the command

Until a line with just samp

samp

⊜Just be careful about spacing – everything is literal, and the
delimiter (samp in this example) must not have anything else
on the line
⊜ Also see <<- for indenting here documents

103

Subshell Executions

11 - Additional Topics

⊜Sometimes, it is convenient to execute a command within
a subshell, which isolates it from the current shell
⊜ It can not impact the environment or working directory of the

current shell
⊜ You can treat the subshell as an individual command, using

redirection and pipes as needed

⊜Simple example:
⊜ (cd /home ; ls a*) | wc –l

⊜This will list a count of the home directories starting with
the letter a. The cd did not change the working directory
of the main shell

104

Command Separators / Control Operators

11 - Additional Topics

⊜There are several ways to separate commands:
⊜ Semicolon (;)

⊜This separates commands and does not provide any relation between
the commands. They are simply executed one after another, left to right.

⊜ Ampersand (&)
⊜This puts the left command in the background and starts executing the

next command immediately

⊜ Double Ampersand (&&)
⊜This will execute the right command if the left command exited with a

zero/success

⊜ Double pipe (||)
⊜This will execute the right command if the left command exited with a

non-zero/fail
105

Trapping Signals

11 - Additional Topics

⊜Sometimes, it’s useful to react to signals when they get
delivered to your script by the kernel

⊜This is easily done with the trap command:
⊜ trap “echo DING” ALRM

⊜ kill -ALRM $$

⊜This instructs the shell to run the echo command when
an alarm signal is delivered

⊜This technique is commonly used to trigger cleanup
routines when the script is interrupted
⊜ One of the examples contained a good illustration of this technique

106

Terminal codes

11 - Additional Topics

⊜Most terminals support various colors and modes to
display information to the user

⊜If you find the codes for the connected terminal, you can
output text with different foreground and background
colors, blinking, dim, underlined and more

⊜A common technique for this is to use hard coded codes
in your strings:
echo -e ”\033[31mRed\033[39m and \033[32mGreen\033[39m”

⊜This gets hard to read and do correctly, so variables are
commonly employed

107

Terminal Codes with Variables

11 - Additional Topics

⊜Using Variables:
RED=“\033[31m”
GREEN=“\033[32m”
NORMAL=“\033[39m”

echo -e “${RED}Red${NORMAL} and ${GREEN}Green${NORMAL}”

⊜With variables, things are a little easier to read, and the
codes can be changed with the terminal

⊜Could functions help here too?
⊜For documentation and examples:

⊜ http://wiki.bash-hackers.org/scripting/terminalcodes

108

Automagic Logging

11 - Additional Topics

⊜This is a really neat trick to attach stdout of your script
to both the terminal and a logfile at the same time

109

#!/bin/bash
we start tee in the background
redirecting its output to the stdout of the script
{ coproc tee { tee logfile ;} >&3 ;} 3>&1
we redirect stdin and stdout of the script to our coprocess
exec >&${tee[1]} 2>&1

Final Lab

11 - Additional Topics

⊜Copy skel.sh to kill-thread.sh
⊜Implement kill-thread.sh to kill mysql connections based

on certain parameters:
kill-thread.sh [-u user] [-h host] [-d db] [-c command]

⊜Just use mysqladmin, and assume there is no root password,
or it is supplied by ~/.my.cnf automatically

⊜Just do simple searches by the various columns, and if the user
supplies more than one flag, all must match to kill the
connection

⊜./kill-thread.sh -h localhost -d test
⊜ Would kill anyone connected to the test database from localhost

⊜Snaz up the output with colors!

110

